
Developing Interim Systems

Abstract

One of the recent challenges in the aerospace industry has been to smoothly transition
operations-oriented computer systems to meet increasing demands on smaller budgets. Sometimes the
best solution is not afforclable,  but the current situation is equally untenab]e.  Change becomes necessary,
but is only acceptable at minimal operational impact and financial costs.

Frequently, interim software solutions must be developed while new hardware is under design or
production. These interim systems are characterized by an immediate need with a limited budget. This
paper discusses several Pactors  involved with producing a working software set in minimal time, such as
the initial approach, budgetary concerns, and resource-scavenging. By recognizing the importance of
these factors, interim system developers will be able to produce working systems with a minimum of
setbacks.

introduction

Software should be perfect. Networks should be capable of handling multiples of the maximum
expected traffic levels. Hardware should never fail. But “should” will not release a system before an
operational deadline, and it invariably costs more than your budget can afford. The solution is to instead
create a system which meets immediate customer demands, yet leaves an open path for future
modifications.

The grouncl  data systems Jet Propulsion Laboratory range from state-of-the-art to nearly obsolete. These
older  systems have no funding for hardware upgrades (replacement hardware is expected within 5
years), yet they still support spacecraft on a daily basis. This paper focuses on methods by which the
operational capabilities for these systems can be significantly extended at a minimum cost.

These methods consist of three main stages: initial approach and design, working within and around
budgetary limitations, and resource-scavenging. While these methods may seem obvious, the impact of
not following these steps is usually only understood in retrospect. Therefore, this paper will set forth
guidelines in each of these areas and examine their usefulness with three operational interim systems
(currently in use at JPL for their Radio Science Systems Group).

1.0 Z’rogram  Descriptions

1.1 Getting Real-  Time Data:  get_tss

The first of the three interim systems which will be used in later examples is a method of getting
real-time data from the central communications facility at JPL (the GCF) through a fircwall and into a
display package which ran on a Sun 4/330. The original system used a dedicated modem line to a Prime
4050, which filtered the data based on spacecraft and receiving station. The data was then sent via
TCP/lP to a Sun 4/330 and processed into shared memory. lJsers could then display various parts of the



data. In order to change the filter to use a different spacecraft or receiving station, the program had to be
stopped and re-started with different parameters.

When the interface was to be formalized between the Radio Science Group and the GCF, the possibility
of using Ethernet was considered politically unacceptable. It was decided that X.25 could be used to
replace the modem interface, because it was already in use in several places on-lab. A filtering program
was written for the incoming data which would allow filter parameters to be changed on-the-fly, and the
routines to handle data receipt were isolated from the rest of the software -- to faciliate  future changes in
the incoming data protocol. This system worked reasonably well;  however, differences in Sun X.25 and
Encore X.25 (the GCF hardware) soon demonstrated a problem: when our system was not listening to
the Encore, the packets were dropped “on the floor” in the GCF, much to their dismay( 1 ).

It was soon suggested that management reconsider the possibility of using a UDP/IP connection,
outbound data only. Upon their eventual approval, the adaptation was simple. Routes were created to
allow only one-way traffic on a single unix socket, and the X.25 receiving software was modified only
to the extent of creating UDP/lP sockets instead of X,25 circuits. Figure 1 illustrates the three data paths
used during the transition:

Figure 1: get_tss, original system and current system.

1.2 Remote Control of DSN Hardwm-e:  remops

The second of the three interitn systems remotely controls a the open-loop receiver (a digital signal
processor with several physical components, commonly called the DSP) at the Deep Space Network
(DSN). lt allows users at JPL or Stanford to configure the IMP, as well as to set up unattended
operations-based configuration ancl run scripts. The J3SP is composed of a MODCOMP 2000 and
several dedicated boards, running REAL/IX (a real-time Unix-based OS). The replacement hardware for
this receiver will be fully funded for the Cassini project, but not until 2002. The unattended operations
capability was initially implemented in order to support a grueling 3-year, 8,()()() -ocultation  mapping
phase by Mars Global Surveyor.

The operational “remops”  system uses a Sun Spare 5 connected via an RS-232  serial cable to the
MODCOMP, using the diagnostic terminal connection as a “back door” into the system. A fairly
standard client/server package handles interactions with remote users. Figures 2 and 3 show this layout:

Figure 2: remops Hardware Layout
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Figure 3: remops Software Data Path
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1.3 Data Analysis: RSVP

The last of the three systems is a data analysis tool which originally was meant to replace the
functionality of a large number of fortran programs which ran on a Prime 4050 with an array processor.
Many of these programs were simply copies of another program with minor modifications or
refinements -- spaghetti code with names like “residO 1”, “resid02”,  and “resid03”  to distinguish the
versions.

The overall structure of the Radio Science Validation and Processing tool, (rsvp), is a C++
“shadowbox’’(2). Figure 4 shows the overview of the design. The front end, which must read in many
different data formats extracts the required data and makes it available to any of the successive
programs. The types of processing were categorized, and their arguments incorporated into the GU1
(graphical user interface), but the programs are called with systen~(3)  calls. This not only allows the
scientists to continue modifying their programs, but it allows the program to remain stable in overall
structure. New data formats only require another C++ class and a few header file entries; the rest of the



code remains fixed. New programs require only a new system call and a GU1-incorporated  argument
list. Version numbers are kept on the scientist-provided subroutines, and only one version is “supported”
at a time. However, multiple entry points into the program are available to accommodate the occasional
need to run non-supported programs on the data, then re-insert that data back into the program.

Figure 4: rsvp  Software Data Path

DATA FILE

2.0 The Initial Approach: How Does Your Project Grow?

The most crucial stage of any new project development is the initial communication of ideas and goals,
and the understanding of how the project will grow and evolve. Several papers ancl books have been
written on strategies to formalize and elaborate each aspect of clearly communicating requirements and
limitations 1 ][5]. Software process models and win-win [2] negotiation methods are continuing to
expand by accommodating “real world” behaviors[4]  and becoming more generalized(4). However,
some projects -- interim systems in particular -- are very rarely ever “done”. These systems are created
to fill a basic need, and are usually expected to be replaced or even retired. But what if an interim system
has years before that happens? The possibility of added capabilities and refinement at a minimal cost can
be very tempting.

interim systems therefore tend to evolve into a series of stacked spiral process models[3],  something
which could be described as a “tornado model”. Each layer inherits a base set of risks and dependencies
from the lower layers, but is uniquely linked to a specific capability which is to be implemented.
Capability requesters can be users, management, or “revolutionaries” -- developers who wish to modify
code now to make future instantiatiotls  easier to develop. The capabilities themselves usually do not
interfere with the functionality of previously-developed instantiations, although such conflicts are
usually identifiable through the inherited dependencies.

Because of this penchant for growth within the low-budget, fast-turnaround and high-risk(5) framework
which characterizes interim systems, several of the normal developmental stages -- communication,
realization of risk, and designing for reusability -- becotne  high-risk factors themselves. Without an
awareness of the evolutionary factors within each stage, a design could result in a program too inflexible
to accommodate future changes which might have been anticipated.



2.1 Communication
The clear communication of objectives between developers and requesters is perhaps the most
significant method of preventing a failure to successfully implement a software package. When
developing a system which is expected to encounter new-capability requests, the communications and
negotiations methods mentioned above become even more critical. By “getting close to the
custonlers’’[7], and actively searching for possible future requests, the design of a system can anticipate
the need for certain types of flexibility with a much larger lead time than would otherwise be available.
Weekly meetings to discuss status, problems, and possibilities can not only achieve Gild’s “risk sharing
principle’’[6],  but makes sure that no misunderstandings have occured  and that both developers and
requesters understand the overall direction of progress. In addition, the future use of the system can be
addressed; the design can then inherently facilitate the eventual implementation of new capabilities.

As an example, the rsvp program, described above, was not simply a software port to a different
architecture; it was a complete re-design  in structure and responsibility. The package needed to
smoothly accept multiple input data formats, ensure easy the implementation of new input format
hamiling,  and allow the scientists who originally developed the analysis programs to continue to develop
them to accommodate new frequency band equations, new antenna combination methods, or new
analytical ideas.

The “shadowbox” design of rsvp,  described above, satisfied the above conditions. The design also made
it easier to incorporate the most important portions of the Prime 4050 original software, thereby creating
a basic-use capability quickly. However, one important design stage did remain unrecognized until well
after the main structure had been completed: the value of continued discussions with the users about the
difficulties they were having or what kind of functionality they would like in the future. As it turned out,
some of what they were asking for was fairly simple to accommodate, yet they had written separate
programs to bypass that need.

By modeling the package with the consideration of how the software would grow and develop (using a
“tornado’’-sty]e model, Figure 5.), this extra effort could have been avoided. However, after adapting the
software upgrade procedure to reflect this type of model (incorporating weekly meetings, feedback
sessions, and future-use discussions), we found that developers were proactively  tailoring the code to
facilitate the eventual implementation of these “future-use” capabilities in parallel with implementing
changes requested through the feedback sessions. This synchronous development did not greatly
increase the time needed to complete the feedback requests, and when the decisions were made to
implement some of these capabilities many months later, the time involved was much less than
anticipated because of this software “priming”.

Figure 5: “Tornado” Model
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2.2 Realization of Risk: Just Don ‘t hnic

interim systems have an inherent high-risk factor: the high probability that the system will need to
interface or interoperate with a legacy system. These systems have a penchant for undocumented
behavioral anomalies, or “features”. Even the best risk assessments underestimate this potential.

For example, while testing the terminal interface between the DSP and the remops  program, two such
“features” materialized. The first was the assumption in the terminal session software that no human
would sit down and type 1024 commands into the system (the terminal session was not the primary
command interface, but a diagnostic back-door). However, the human would (obviously) want a printout
of all the commands entered. Therefor, all commancls were stored in a buffer -- a buffer with 1024
spaces, Upon reaching the 1024th command, the system refused to take further input until the terminal
session was aborted.

This limit led to the idea to open up a new terminal session whenever a new configuration set neecled  to
be input (which uses approximately 15 commands). Within 5 minutes of back-to-back test runs, we
discovered a memory leak in the DSP system queues; the more terminal sessions started and stopped,
the less memory was available for the rest of the system. Eventually the entire system would hang.
Therefore the only compromise was to keep track of how many commands got sent, and only when that
number neared 1024, to automatically shut down and restart the terminal connection. This would give
the system the maximum possible length of time in which to operate before the system would need to be
rebooted: about 5 weeks.

Luckily, the hardware rarely was able to operate for 3 weeks without needing to be rebooted for other,
less understood, reasons.

While it is very difficult to accurately model this type of high-risk behavior, interim systems designers
do have some leverage when proposing solutions which would otherwise not be considered. Support
from management must be strongly committed, especially when the proposed solutions are best
described as “creative”. Don’t panic: interim systems projects are rarely undertaken when they are not
urgently needed. While not exactly intended in the same context, Gilb’s uncertainty motivation
principle[6]  can be applied to the potential for a lack of support from management:



Uncertainty in a technical project is half technical and half motivational, but with good
enough motivation, uncertainty will not be allowed to lead to problems.

Frequently, the thought of an interim system not working provides plenty of motivation.

2.3 Designing for Reusability

In general, the expectation upon an interim system is that it will be in use only until the replacement
system arrives. However, this expectation cannot defend throwaway code, nor code which is not
portable or upgradeable.  The replacement system may not be available until much later than expected.

In anticipation of the change, however, designers should understand the expected replacement system,
not necessarily as a final destination in the growth of the interim system, but more as a system which is
trying to surpass the possibilities of the interim system. Time should not have to be spent redeveloping
the modules which create old capabilities! Instead, by writing code which is easily reused and portable,
modules of the interim system can be incorporated into the replacement system, allowing more time to
be spent on those previously unreachable capabilities.

In this way, the interim system becomes a resource which can be scavenged later, with a minimum
amount of portability and modification effort. The ,get_tss program, described above, exemplifies this
through the X.25 to UDP/IP transition; the body of the code was unchanged while. only the socket
initiation code needed to be changed.

3.0 Budget Limitation: Creativity While Being Broke

The second guideline towards successful interim system development is creative financing. Usually, the
most insidious of budget allocation patterns is the tendency to think of financia] sources in set, well-used
ways. At JPL, spacecraft projects tend to think in terms of “project money”: what that money buys, the
project owns completely. In companies with multiple projects, this can lead to a large amount of
replication of resources with minimal gains in reliability.

At JPL, the role of Radio Science is (given a spacecraft, a signal, and a receiving station) to produce
planetary/atnlospheric  science data. As projects come and go, the Radio Science Group needs to
continually expand and grow in order to accommodate these changing needs and be a truly
multi-mission service provider. Because of this growth pattern, the Radioscience Operations and Data
Analysis Network (RODAN) can can itself be characterized as an interim system. However,
mainstream, project-line funding can be severely detrimental to the overall quality (robustness,
reliability, capabilities, and veracity) of the Radio Science system.

As an example, until last year the low number of concurrent projects had allowed RODAN to follow the
same trend as the projects: each project owned a subnct  off of the central operations backbone, and all
workstations associated with that project were installed on that subnet (See Figure 6). Because Radio
Science was not located in the same building as the project offices, however, fiber lines had been
installed between buildings: one for Galileo, and one for Mars Global Surveyor (MGS). Each project
was willing to buy Radio Science a single workstation for real-time operations and sequencing activities.
This was all in accordance with the. budget limitations of each project, and all very separate from each
other.



Figure  6: Original Radio Science Operations Network Design
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When the operations and sequencing scenarios for Cassini were initially considered, this trend showed
to be extremely restrictive. The expected future increase in concurrent mission numbers (e.g. Pluto
Express, Mars 98) and the possibility of a single-point failure associated with the one workstation/one
project funding scheme emphasized further the need for a major design change. Politically, however, no
funding was available: Cassini  was thinking of duplicating the entire Radio Science team within the
Cassini  heirarchy,  MGS had already spent all it could on Radio Science by funding the remops
development, and Galileo was settled into the status quo.

The basic characteristics of interim systems, however, provide a unique source of justification of
financial expense. Invariably, interim systems are strongly needed -- and not always only by the
proposing group! By combining a financial analogy of Gilb’s uncertainty motivation principle with a
proof of lowered future costs, along with a “sale-by-example” approach, both the Cassini and Galileo
projects realized that they, too, needed the ret)mps  system. However, both projects were also made very
aware of the vulnerability of the current single-point failure design, so when the final layout of a single
Radio Science LAN (Figure 7), in parallel with the individual project LANs, they were more willing to
trade a project-owned system for an affordable and robust shared system. MGS would give their fiber
line back to JPL, Galileo would donate their fiber and hub for general Radio Science use, and Cassini
would fund labor costs. The benefit for modifying the strict project-line funding would come in
operations cost: with the remops  system, 30 minutes of pre-pass  calibration are no longer needed. At the
70-nl antennas, time costs about $ 1200/hour, and at the 34-m stations, around $750/hr.  Obviously, the
savings build quickly.

Figure 7: New Radio Science Operations Network I)esign
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Admittedly, the feat of pulling financing out of apparently thin air does not always work out as cleanly
as that example. While the diplomacy, approach, and presentation of a different type of financing
remains an art form, interim systems, however, give developers a lot of leverage. For example, when
dealing with the burgeoning Cassini “fiefdom” design, the Radio Science group can really only
emphasize its “proven and stable” contracting firm image, and hope for the best. However, if Cassini
wants the remops  system to be ported to HI}/lJX, or utilize the operational experience which resides
within the Radio Science group, then financial support would obviously be expected.

4.0 Resource Scavenging: Scotty(6)  had the Right Idea

The third guideline crucial to the development of interim systems is resource scavenging -- essentially a
protection against wasted time. With a little time invested in identifying available resources, a lot of time
can potentially be conserved. Most of this scavenging phase is already a part of the spiral software
model -- such as finding appropriate third-party applications. However, interimflegacy  system interfaces
have a high cost risk associated with not emphasizing ccr(ain  types of resources -- freeware/COTS
applications, original developers, and creative perspectives.

4.1 Tools

The primary source of available tools is from other programmers or developers -- and for interim
systems, the fact that stable freeware is much more affordable than many COTS packages is not lost in
the design phase. While these packages may not exactly fit the system’s needs, adaptation or extension
can frequently be aclded at a fraction of the cost of writing a comparable system.

For example, while writing a graph tool for the analysis package rsvp one of the developers was able to
get a lot of ideas and examples from existing soflware, such as the ltcl source(7) and documentation, and
the associated extended widget libraries. This saved him a lot of time; he was able to produce a working
product within a few weeks.

4.2 l’eople

Original developers of the legacy systems with which the interim system must interface arc also
extreme] y valuable. While many anomal  ics may not be documented, these developers may be able to
give information about the problems and advice on how to work around them. LJnfortunately,  these



developers are frequently gone or unavailable for extended periods of time, or in one case “ wouldn’  t
touch that system with a 10 foot pole, except to hit it very, very hard”.

A lack of these human resources can severely impact the effectiveness of an interim system because of
the close ties between legacy system interfaces and undocumented behavior. For example, while
developing the remops  software, the interface to the D! SF’ proved to be troublesome because of some
assumptions about how the communication between the MODCOMP and the secondary system (the
Signal Processing Assembly - Radio Science, or the SPA-R) was conducted in the case of a reboot of the
SPA-R but not of the MODCOMP. It had been understood that the MODCOMP would re-send  the
configuration settings to the SPA-R, but this was not exactly the case; the MODCOMP only sent over a
subset of these configurations. This was not discovered until the system was in operational use: such a
reboot pattern does not happen frequently, and it had not been tested because it technically wasn’t a part
of the remops  system.

In these cases the next best resource is a user-group maintained log of “unexpected” observed behaviors.
The documentation of interitn  systems frequent] y must cover problems with the legacy systems; with
such a log, the same problem won’t bite you (or another developer) twice.

4.3 Creative Perspectives: Iloes This Really Have To Be This Way?

The last segment of resource scavenging is to identify which applicable technical restrictions are easier
to change than avoid, and which are easier to avoid than to change. Interim systems are frequently
subjected to technical restrictions which are based on older systems, and which may not bc not
complete] y relevant. Therefore, the design of thes ystem must take into account the probability of a
change in these restrictions, and factor in the benefits of using the resources which would then become
available.

While originally implementing the gct_tss program, Cisco routers were not trusted to provide a firewall
when outbound UDP/IP data was allowed; therefore the X.25 interface was selected. The design of the
package, however, ensured that if an ethernet connection was eventually allowed, minimal changes
would have to be made. Over the course of a year while the communications facility’s staff became
more familiar with the Cisco routers, and given the problems encounted  with the Sun/Encore X.25
interface, the system was able to be switched to UDP/lP, and the extra cables, cards, and switches were
able to be discarded. In this case, the restriction could not bc avoided, and it was therefore easier to
simply change the software when that restriction was eventually lifted.

On the other hand, the remops  system is not able to get monitor data via broadcast at the remote
workstations at Stanford due to valid security restrictions. in this case, the restriction is avoided by
designing several parallel methods of receiving monitor data, and using the best available method for
each machine: via broadcast, database query, or by a special query to the DSP itself.

5.0 Conclusions

While the spiral software model has incorporated the vast majority of system development and design
concernts, interim systems require extra emphasis on the initial approach, budget considerations, and
resource scavenging. Because of the nature of such systems -- interfacing with legacy software and
fragile hardware, intended for short-term LISC an(i therefore needed on an per-capability basis -- ignoring



the importance of these factors can lead to serious consecluences,  such as late-stage design changes,
unexpected incompatibilities, or worse, not having a working product if the old system fails before the
new system has been funded. Essentially, interim system development theory can be summed up by the
simple phrase: get it done, make it work, and don’t spend any extra money. By following the above
model, developers can build working, growing interim systems with just that characteristic.

Appendix A: Foot/lotes

1.
2.

3. .
4.

5-.
6.
7.

Note: this is not a problem in Sun-to-Sun X.25 connections.
Shadowbox: a decorative set c)f small attached boxes which is hung on a wall. Knick-knacks are
then placed on each little shelf.
Standard C library sys~em command, SunOS 4.1.4
However, actually applying these models to a proposed system always requires some tailoring --
even if that tailoring consists of recognizing each phase but not acting upon it.
In this case, the risk associated with the uncertainty involving legacy systems.
The engineer from Star Trek (the original series).
Itc12.O for these  packages.
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